INFORMATION BULLETIN

AIYSEE (All India Youth Scholarship Entrance Examination) is a national level merit based scholarship program .

CONTENT

- Important Instruction
- Scholarship Slab
- Instructions for applying online
- How to apply online
- Examination Center
- Structure Of Online Test
- Syllabus

IMPORTANT

Candidates are required to go through the User Manual carefully and acquaint themselves.

- Candidates can apply for AIYSEE-2018 through " online mode " only.
- User manual can be downloaded from the website <u>www.aiysee.com</u>
- Online filling up of the Application Form may be made by Clicking on the link under Important links "AIYSEE-2018 Scholarship Exam Apply online"
- Candidates must follow the instructions strictly as given in the user manual and on website.
- Candidate can pay application fee through "online mode" only (i.e., Debit card / credit card / Netbanking). If Your payment is debited from your account and confirmation page is not show, please mail or call us as soon as possible and wait for 24-48 hours.

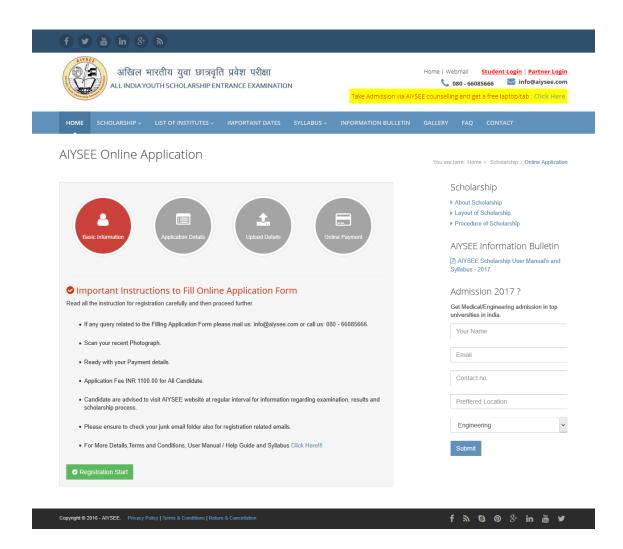
- AIYSEE-2018 will be held in single stage and would be an objective test.
- Candidates can apply for AIYSEE scholarship for Engineering or Medical (MBBS/BDS) Only.
- Examination Centre, Examination mode and Language of Question Paper must be chosen carefully as changes are not allowed after submission of online application.
- For Latest updates, Candidates must remain in touch with the website www.aiysee.com and regularly check their e-mail till completion of scholarship process.
- For any query please mail us: info@aiysee.com or call us 080-66085666
- Cut-Off Marks will be decided after the AIYSEE-2018 Examination and Rank Depends According to Cut-Off Marks.
- Before filling up the application form the candidate should have a scanned image of his/her photograph. These scanned images are to be uploaded during the submission of application form.

SCHOLARSHIP SLAB

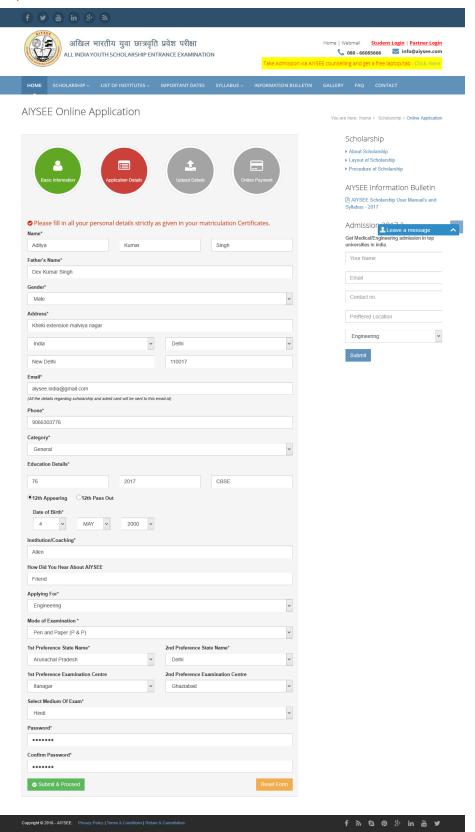
STUDENTS	ENGINEERING (Private/Govt.)	MEDICAL (Private/Govt.)	
1000	4 Year Scholarship 5 Year Scholars		
4000	3 Year Scholarship	3 Year Scholarship	
10000	1.5 Year Scholarship	2 Year Scholarship	
20000	1 Semester Scholarship	1 year Scholarship	
30000	4 month Stipend	4 month Stipend	
Remaining Student having Cutoff	Rewards (Laptop/Tab/Kindle)	e) Rewards (Laptop/Tab/Kindle	

INSTRUCTIONS FOR APPLYING ONLINE

- The candidates must have their own personal and valid email- id. They are also advised to have their own mobile number. The candidates are advised to retain the same mobile number and email-id in use which they have furnished in the application form because important information may be given to the candidates through SMS or e-mail.
- Before filling up the application form the candidate should have a scanned image of his/her
 photograph and signature. These scanned images are to be uploaded during the submission of
 application form. The photograph should be coloured. It should be should be without cap or
 goggles. Spectacles are allowed. Polaroid photos are not acceptable. Candidates with unclear
 photograph are liable to be rejected.

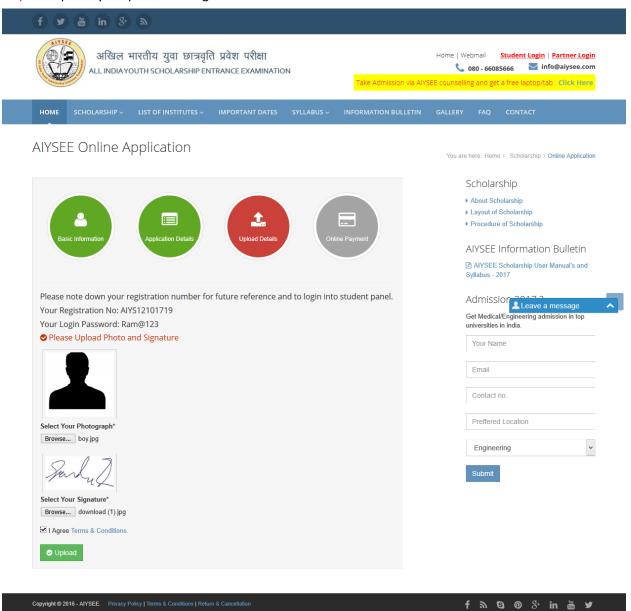

HOW TO REGISTER?

SIMPLIFIED STEP BY STEP GUIDE ON HOW TO REGISTER AND APPLY FOR AIYSEE SCHOLARSHIP - 2018


Screenshot and instructions Regarding filling up of Application form:

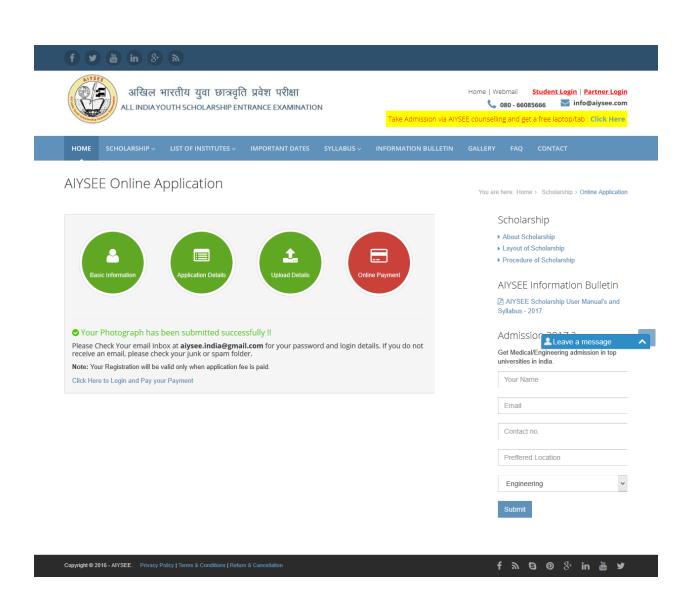
Step 1: Visit www.aiysee.com and click "AIYSEE – 2018 Scholarship exam apply online."

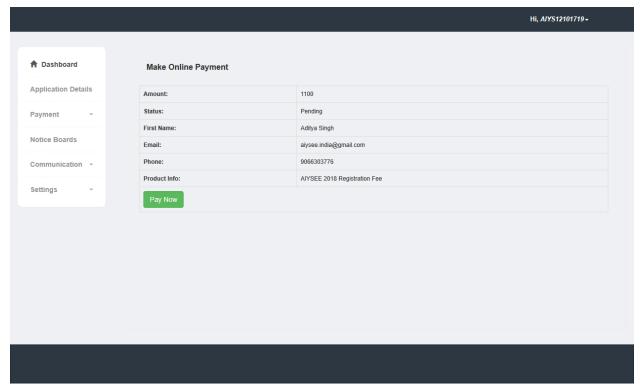
Step 2 : Read Instructions carefully and click on "Registration start"



Step 3: Fill in the details as in X certificate

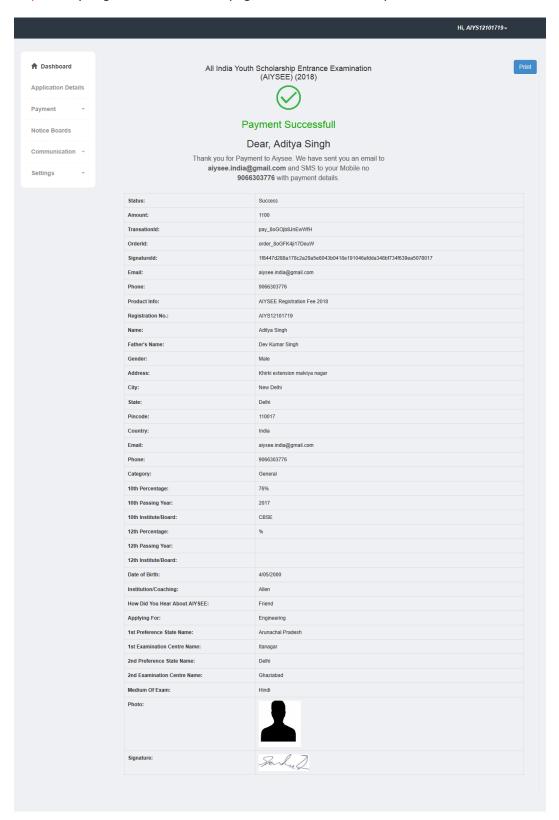
Click on "Submit & proceed "after filling up the details.


Step 4: Upload your photo and signature.


Note down the registration number and password and keep it safe for future reference.

Tick the "I agree Terms and Conditions" box.

Click on upload to proceed.


Step 5: Make Payment

Click on "pay now " tab.

Pay Application Fee via Credit / Debit / ATM Card or Netbanking

Step 6: As you get the confirmation page, students can take a printout for future reference

ELIGIBILITY CRITERIA

Any 12th passed out or appearing candidate from a recognize board whose appearing year is 2018 or passed year is 2013 and onwards are eligible.

Application Fee (INR): 1100.00 for all Quota (General/OBC/SC/ST)

EXAMINATION CENTER

Ahmedabad, Ajmer, Allahabad, Arra, Bangalore, Bangalore, Bhilai, Bhopal, Bilaspur, Bhagalpur, Bokaro, Begusarai, Betiya, Badh, Bhubaneswar, Calicut, Chhapra, Cuttack, Chandigarh, Coimbatore, Dehradun, Darjeeling, Delhi/NCR, Gandhinagar, Gwalior, Gurgaon, Gaya, Gopalganj, Hyderabad, Indore, Jaipur, Jabalpur, Jahanabad, Jamshedpur, Jodhpur, Kanpur, Kochi, Kota, Kolkata, Kishanganj, Katihar, Lakhisarai, Ludhiana, Lucknow, Motihari, Mangalore, Mumbai, Mysore, Muzaffarpur, Nahsik, Patna, Pune, Raipur, Ranchi, Rourkela, Shimla, Surat, Tirupati, Thiruvananthapuram, Udaipur, Vijayawada, Vishakhapatnam.

STRUCTURE OF ONLINE TEST

Duration of Examination: 90 Minutes

Question type: Objective (Multiple Choice Question)

SUBJECT	PHYSICS	CHEMISTRY	MATHEMATICS/	TOTAL
			BIOLOGY	
QUESTIONS	30	30	30	90

There is no negative (-ve) marking for wrong answer.

^{*}Examination center may change

SYLLABUS

PHYSICS

Unit 1: Physical World and Measurement

Chapter-1: Physical World

Physics - scope and excitement; nature of physical laws; Physics, technology and society.

Chapter-2: Units and Measurements

Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. Length, mass and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures.

Dimensions of physical quantities, dimensional analysis and its applications.

Unit 2: Kinematics

Chapter-3: Motion in a Straight Line

Frame of reference, Motion in a straight line: Position-time graph, speed and velocity.

Elementary concepts of differentiation and integration for describing motion. Uniform and non-uniform motion, average speed and instantaneous velocity. Uniformly accelerated motion, velocity time and position-time graphs.

Relations for uniformly accelerated motion (graphical treatment).

Chapter-4: Motion in a Plane

Scalar and vector quantities; Position and displacement vectors, general vectors and their notations; equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors. Relative velocity. Unit vector; Resolution of a vector in a plane - rectangular components. Scalar and Vector product of vectors.

Motion in a plane, cases of uniform velocity and uniform acceleration-projectile motion.

Uniform circular motion.

Unit 3: Laws of Motion

Chapter–5: Laws of Motion

Intuitive concept of force. Inertia, Newton's first law of motion; momentum and Newton's second law of motion; impulse; Newton's third law of motion.

Law of conservation of linear momentum and its applications.

Equilibrium of concurrent forces. Static and kinetic friction, laws of friction, rolling friction, lubrication.

Dynamics of uniform circular motion: Centripetal force, examples of circular motion (vehicle on a level circular road, vehicle on banked road).

Unit 4: Work, Energy and Power

Chapter-6: Work, Engery and Power

Work done by a constant force and a variable force; kinetic energy, work-energy theorem, power.

Notion of potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (kinetic and potential energies); non-conservative forces: motion in a vertical circle; elastic and inelastic collisions in one and two dimensions.

Unit 5: Motion of System of Particles and Rigid Body

Chapter-7: System of Particles and Rotational Motion

Centre of mass of a two-particle system, momentum conservation and centre of mass motion.

Centre of mass of a rigid body; centre of mass of a uniform rod.

Moment of a force, torque, angular momentum, laws of conservation of angular momentum and its applications.

Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions.

Moment of inertia, radius of gyration. Values of moments of inertia, for simple geometrical objects (no derivation). Statement of parallel and perpendicular axes theorems and their applications.

Unit 6: Gravitation

Chapter–8: Gravitation

Keplar's laws of planetary motion. The universal law of gravitation.

Acceleration due to gravity and its variation with altitude and depth.

Gravitational potential energy and gravitational potential. Escape velocity. Orbital velocity of a satellite. Geo-stationary satellites.

Unit 7: Properties of Bulk Matter

Chapter-9: Mechanical Properties of Solids

Elastic behaviour, Stress-strain relationship, Hooke's law, Young's modulus, bulk modulus, shear modulus of rigidity, Poisson's ratio; elastic energy.

Chapter–10: Mechanical Properties of Fluids

Pressure due to a fluid column; Pascal's law and its applications (hydraulic lift and hydraulic brakes). Effect of gravity on fluid pressure.

Viscosity, Stokes' law, terminal velocity, streamline and turbulent flow, critical velocity. Bernoulli's theorem and its applications.

Surface energy and surface tension, angle of contact, excess of pressure across a curved surface, application of surface tension ideas to drops, bubbles and capillary rise.

Chapter–11: Thermal Properties of Matter

Heat, temperature, thermal expansion; thermal expansion of solids, liquids and gases, anomalous expansion of water; specific heat capacity; Cp, Cv - calorimetry; change of state - latent heat capacity.

Heat transfer-conduction, convection and radiation, thermal conductivity, Qualitative ideas

of Blackbody radiation, Wein's displacement Law, Stefan's law, Green house effect.

Unit 8: Thermodynamics

Chapter–12: Thermodynamics

Thermal equilibrium and definition of temperature (zeroth law of thermodynamics). Heat, work

and internal energy. First law of thermodynamics. Isothermal and adiabatic processes.

Second law of thermodynamics: reversible and irreversible processes. Heat engine and

refrigerator.

Unit 9: Behaviour of Perfect Gases and Kinetic Theory of Gases

Chapter–13: Kinetic Theory

Equation of state of a perfect gas, work done in compressing a gas.

Kinetic theory of gases - assumptions, concept of pressure. Kinetic interpretation of temperature;

rms speed of gas molecules; degrees of freedom, law of equi-partition of energy (statement only)

and application to specific heat capacities of gases; concept of mean free path, Avogadro's

number.

Unit 10: Oscillations and Waves

Chapter–14: Oscillations

Periodic motion - time period, frequency, displacement as a function of time. Periodic functions.

Simple harmonic motion (S.H.M) and its equation; phase; oscillations of a spring-restoring force

and force constant; energy in S.H.M. Kinetic and potential energies; simple pendulum derivation

of expression for its time period.

Free, forced and damped oscillations (qualitative ideas only), resonance.

Chapter–15: Waves

Wave motion. Transverse and longitudinal waves, speed of wave motion. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect.

Unit 11: Electrostatics

Chapter-1: Electric Charges and Fields

Electric Charges; Conservation of charge, Coulomb's law-force between two point charges, forces between multiple charges; superposition principle and continuous charge distribution.

Electric field, electric field due to a point charge, electric field lines, electric dipole, electric field due to a dipole, torque on a dipole in uniform electric fleld.

Electric flux, statement of Gauss's theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell (field inside and outside).

Chapter-2: Electrostatic Potential and Capacitance

Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges; equipotential surfaces, electrical potential energy of a system of two point charges and of electric dipole in an electrostatic field.

Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarisation, capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor.

Unit 12: Current Electricity

Chapter-3: Current Electricity

Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their relation with electric current; Ohm's law, electrical resistance, V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity. Carbon resistors, colour code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance.

Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel. Kirchhoff's laws and simple applications. Wheatstone bridge, metre bridge.

Potentiometer - principle and its applications to measure potential difference and for comparing emf of two cells; measurement of internal resistance of a cell.

Unit 13: Magnetic Effects of Current and Magnetism

Chapter-4: Moving Charges and Magetism

Concept of magnetic field, Oersted's experiment.

Biot - Savart law and its application to current carrying circular loop.

Ampere's law and its applications to infinitely long straight wire. Straight and toroidal solenoids, Force on a moving charge in uniform magnetic and electric fields. Cyclotron.

Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in uniform magnetic field; moving coil galvanometer-its current sensitivity and conversion to ammeter and voltmeter.

Chapter-5: Magnetism and Matter

Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic dipole moment of a revolving electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis. Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines; Earth's magnetic field and magnetic elements.

Para-, dia- and ferro - magnetic substances, with examples. Electromagnets and factors affecting their strengths. Permanent magnets.

Unit 14: Electromagnetic Induction and Alternating Currents

Chapter-6: Electromagnetic Induction

Electromagnetic induction; Faraday's laws, induced emf and current; Lenz's Law, Eddy

currents.

Self and mutual induction.

Chapter-7: Alternating Current

Alternating currents, peak and rms value of alternating current/voltage; reactance and

impedance; LC oscillations (qualitative treatment only), LCR series circuit, resonance; power in

AC circuits, wattless current.

AC generator and transformer.

Unit 15: Electromagnetic waves

Chapter-8: Electromagnetic Waves

Basic idea of displacement current, Electromagnetic waves, their characteristics, their transverse

nature (qualitative ideas only).

Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays,

gamma rays) including elementary facts about their uses.

Unit 16: Optics

Chapter-9: Ray Optics and Optical Instruments

Ray Optics:: Reflection of light, spherical mirrors, mirror formula. Refraction of light, total

internal reflection and its applications, optical fibres, refraction at spherical surfaces, lenses, thin

lens formula, lensmaker's formula. Magnification, power of a lens, combination of thin lenses in

contact combination of a lens and a mirror. Refraction and dispersion of light through a prism.

Scattering of light - blue colour of sky and reddish apprearance of the sun at sunrise and sunset.

Optical instruments: Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers.

Chapter-10: Wave Optics

Wave optics: Wave front and Huygen's principle, relection and refraction of plane wave at a plane surface using wave fronts. Proof of laws of reflection and refraction using Huygen's principle. Interference Young's double slit experiment and expression for fringe width, coherent sources and sustained interference of light. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes. Polarisation, plane polarised light Brewster's law, uses of plane polarised light and Polaroids.

Unit 17: Dual Nature of Matter and Radiation

Chapter-11: Dual Nature of Radiation and Matter

Dual nature of radiation. Photoelectric effect, Hertz and Lenard's observations; Einstein's photoelectric equation-particle nature of light.

Matter waves-wave nature of particles, de Broglie relation. Davisson-Germer experiment (experimental details should be omitted; only conclusion should be explained).

Unit 18: Atoms & Nuclei

Chapter-12: Atoms

Alpha-particle scattering experiment; Rutherford's model of atom; Bohr model, energy levels, hydrogen spectrum.

Chapter-13: Nuclei

Composition and size of nucleus, atomic masses, isotopes, isobars; isotones. Radioactivityalpha, beta and gamma particles/rays and their properties; radioactive decay law.

Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number; nuclear fission, nuclear fusion.

Unit 19: Electronic Devices

Chapter-14: Semiconductor Electronics: Materials, Devices and Simple Circuits

Energy bands in conductors, semiconductors and insulators (qualitative ideas only)

Semiconductor diode - I-V characteristics in forward and reverse bias, diode as a rectifier;

Special purpose p-n junction diodes: LED, photodiode, solar cell and Zener diode and their characteristics, zener diode as a voltage regulator.

Junction transistor, transistor action, characteristics of a transistor and transistor as an amplifier (common emitter configuration), basic idea of analog and digital signals, Logic gates (OR, AND,

NOT, NAND and NOR).

Unit 20: Communication Systems

Chapter-15: Communication Systems

Elements of a communication system (block diagram only); bandwidth of signals (speech, TV and digital data); bandwidth of transmission medium. Propagation of electromagnetic waves in the atmosphere, sky and space wave propagation, satellite communication. Need for modulation, amplitude modulation and frequency modulation, advantages of frequency modulation over amplitude modulation. Basic ideas about internet, mobile telephony and global positioning

system (GPS).

CHEMISTRY

Unit 1: Some Basic Concepts of Chemistry

General Introduction: Importance and scope of chemistry.

Nature of matter, laws of chemical combination, Dalton's atomic theory: concept of

elements, atoms and molecules.

Atomic and molecular masses, mole concept and molar mass, percentage composition,

empirical and molecular formula, chemical reactions, stoichiometry and calculations based on

stoichiometry.

Unit 2: Structure of Atom

Discovery of Electron, Proton and Neutron, atomic number, isotopes and isobars. Thomson's model and its limitations. Rutherford's model and its limitations, Bohr's model and its limitations, concept of shells and subshells, dual nature of matter and light, de Broglie's relationship, Heisenberg uncertainty principle, concept of orbitals, quantum numbers, shapes of s, p and d orbitals, rules for filling electrons in orbitals - Aufbau principle, Pauli's exclusion principle and Hund's rule, electronic configuration of atoms, stability of half filled and completely filled orbitals.

Unit 3: Classification of Elements and Periodicity in Properties

Significance of classification, brief history of the development of periodic table, modern periodic law and the present form of periodic table, periodic trends in properties of elements - atomic radii, ionic radii, inert gas radii Ionization enthalpy, electron gain enthalpy, electronegativity, valency. Nomenclature of elements with atomic number greater than 100.

Unit 4: Chemical Bonding and Molecular Structure

Valence electrons, ionic bond, covalent bond; bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, concept of hybridization, involving s,p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules (qualitative idea only), hydrogen bond.

Unit 5: States of Matter: Gases and Liquids

Three states of matter, intermolecular interactions, types of bonding, melting and boiling points, role of gas laws in elucidating the concept of the molecule, Boyle's law, Charles law, Gay Lussac's law, Avogadro's law, ideal behaviour, empirical derivation of gas equation, Avogadro's number, ideal gas equation. Deviation from ideal behaviour, liquefaction of gases, critical temperature, kinetic energy and molecular speeds (elementary idea)Liquid State- vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations)

Unit 6: Chemical Thermodynamics

Concepts of System and types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions.

First law of thermodynamics -internal energy and enthalpy, heat capacity and specific heat, measurement of ΔU and ΔH , Hess's law of constant heat summation, enthalpy of bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, solution and dilution. Second law of Thermodynamics (brief introduction)

Introduction of entropy as a state function, Gibb's energy change for spontaneous and non-spontaneous processes, criteria for equilibrium.

Third law of thermodynamics (brief introduction).

Unit 7: Equilibrium

Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium - Le Chatelier's principle, ionic equilibrium-ionization of acids and bases, strong and weak electrolytes, degree of ionization, ionization of poly basic acids, acid strength, concept of pH, Henderson Equation, hydrolysis of salts (elementary idea), buffer solution, solubility product, common ion effect (with illustrative examples).

Unit 8: Redox Reaction

Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, in terms of loss and gain of electrons and change in oxidation number, applications of redox reactions.

Unit 9: Hydrogen

Position of hydrogen in periodic table, occurrence, isotopes, preparation, properties and uses of hydrogen, hydrides-ionic covalent and interstitial; physical and chemical properties of water, heavy water, hydrogen peroxide -preparation, reactions and structure and use; hydrogen as a fuel.

Unit 10: s -Block Elements (Alkali and Alkaline Earth Metals)

Group 1 and Group 2 Elements

General introduction, electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens, uses.

Preparation and Properties of Some Important Compounds:

Sodium Carbonate, Sodium Chloride, Sodium Hydroxide and Sodium Hydrogencarbonate, Biological importance of Sodium and Potassium. Calcium Oxide and Calcium Carbonate and their industrial uses, biological importance of Magnesium and Calcium.

Unit 11: Some p -Block Elements

General Introduction to p - Block Elements

Group 13 Elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group, Boron - physical and chemical properties, some important compounds, Borax, Boric acid, Boron Hydrides, Aluminium: Reactions with acids and alkalies, uses.

Group 14 Elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behaviour of first elements. Carbon-catenation, allotropic forms, physical and chemical properties; uses of some important compounds: oxides. Important compounds of Silicon and a few uses: Silicon Tetrachloride, Silicones, Silicates and Zeolites, their uses.

Unit 12: Organic Chemistry - Some Basic Principles and Technique

General introduction, methods of purification, qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions, electrophiles and nucleophiles, types of organic reactions.

Unit 13: Hydrocarbons

Classification of Hydrocarbons

Aliphatic Hydrocarbons:

Alkanes - Nomenclature, isomerism, conformation (ethane only), physical properties, chemical reactions including free radical mechanism of halogenation, combustion and pyrolysis.

Alkenes - Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation, chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markownikov's addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition.

Alkynes - Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of - hydrogen, halogens, hydrogen halides and water.

Aromatic Hydrocarbons: Introduction, IUPAC nomenclature, benzene: resonance, aromaticity, chemical properties: mechanism of electrophilic substitution. nitration, sulphonation, halogenation, Friedel Craft's alkylation and acylation, directive influence of functional group in monosubstituted benzene. Carcinogenicity and toxicity.

Unit 14: Environmental Chemistry

Environmental pollution - air, water and soil pollution, chemical reactions in atmosphere, smog, major atmospheric pollutants, acid rain, ozone and its reactions, effects of depletion of ozone layer, greenhouse effect and global warming- pollution due to industrial wastes, green chemistry as an alternative tool for reducing pollution, strategies for control of environmental pollution.

Unit 15: Solid State

Classification of solids based on different binding forces: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea). Unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties.

Band theory of metals, conductors, semiconductors and insulators and n & p type semiconductors.

Unit 16: Solutions

Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties - relative lowering of vapour pressure, Raoult's law, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass, van't Hoff factor.

Unit 17: Electrochemistry

Redox reactions, conductance in electrolytic solutions, specific and molar conductivity, variations of conductivity with concentration, Kohlrausch's Law, electrolysis and law of electrolysis (elementary idea), dry cell -electrolytic cells and Galvanic cells, lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, Relation between Gibbs energy change and emf of a cell, fuel cells, corrosion.

Unit 18: Chemical Kinetics

Rate of a reaction (Average and instantaneous), factors affecting rate of reaction: concentration, temperature, catalyst; order and molecularity of a reaction, rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions), concept of collision theory (elementary idea, no mathematical treatment). Activation energy, Arrhenious equation.

Unit 19: Surface Chemistry

Adsorption - physisorption and chemisorption, factors affecting adsorption of gases on solids, catalysis, homogenous and heterogenous activity and selectivity; enzyme catalysis colloidal state distinction between true solutions, colloids and suspension; lyophilic, lyophobic multimolecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation, emulsion - types of emulsions.

Unit 20: General Principles and Processes of Isolation of Elements

Principles and methods of extraction - concentration, oxidation, reduction - electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.

Unit 21: p - Block Elements

Group 15 Elements: General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; nitrogen preparation properties & uses; compounds of nitrogen, preparation and properties of ammonia and nitric acid, oxides of nitrogen (Structure only); Phosphorus - allotropic forms, compounds of phosphorus: preparation and properties of phosphine, halides PC13, PC15 and oxoacids (elementary idea only).

Group 16 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties, dioxygen: Preparation, Properties and uses, classification of oxides, Ozone, Sulphure -allotropic forms; compounds of sulphure: Preparation properties and uses of sulphur-dioxide, sulphuric acid: industrial process of manufacture, properties and uses; oxoacids of sulphur (Structures only).

Group 17 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens, Preparation properties and uses of chlorine and hydrochloric acid, interhalogen compounds, oxoacids of halogens (structures only).

Group 18 Elements: General introduction, electronic configuration, occurrence, trends in physical and chemical properties, uses.

Unit 22: d and f Block Elements

General introduction, electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first row transition metals - metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy formation, preparation and properties of K2Cr2O7 and KMnO4.

Lanthanoids - Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction and its consequences.

Actinoids - Electronic configuration, oxidation states and comparison with lanthanoids.

Unit 23: Coordination Compounds

Coordination compounds - Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds. Bonding, Werner's theory, VBT, and CFT; structure and stereo isomerism, importance of coordination compounds (in qualitative inclusion, extraction of metals and biological system).

Unit 24: Haloalkanes and Haloarenes

Haloalkanes: Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions, optical rotation.

Haloarenes: Nature of C -X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only.

Uses and environmental effects of - dichloromethane, trichloromethane, tetrachloromethane, iodoform freons, DDT.

Unit 25: Alcohols, Phenols and Ethers

Alcohols: Nomenclature, methods of preparation, physical and chemical properties(of primary alcohols only), identification of primary, secondary and tertiary alcohols, mechanism of dehydration, uses with special reference to methanol and ethanol.

Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols.

Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses.

Unit 26: Aldehydes, Ketones and Carboxylic Acids

Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, mechanism of nucleophillic addition, reactivity of alpha hydrogen in aldehydes: uses.

Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.

Unit 27: Organic compounds containing Nitrogen

Amines: Nomenclature, classification, structure, methods of preparation, physical and

chemical properties, uses, identification of primary, secondary and tertiary amines.

Cyanides and Isocyanides - will be mentioned at relevant places in context.

Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.

Unit 28: Biomolecules

Carbohydrates - Classification (aldoses and ketoses), monosaccahrides (glucose and

fructose), D-L configuration oligosaccharides (sucrose, lactose, maltose), polysaccharides

(starch, cellulose, glycogen) importance.

Proteins - Elementary idea of α - amino acids, peptide bond, polypeptides, proteins, structure of

proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea only),

denaturation of proteins; enzymes. Hormones - Elementary idea excluding structure.

Vitamins - Classification and functions.

Nucleic Acids: DNA and RNA.

Unit 29: Polymers

Classification - natural and synthetic, methods of polymerization (addition and

condensation), copolymerization, some important polymers: natural and synthetic like polythene,

nylon polyesters, bakelite, rubber. Biodegradable and non-biodegradable polymers.

Unit 30: Chemistry in Everyday life

Chemicals medicines disinfectants. in analgesics, tranquilizers antiseptics,

antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines.

Chemicals in food - preservations, artificial sweetening agents, elementary idea of antioxidants.

Cleansing agents - soaps and detergents, cleansing action.

BIOLOGY

Unit 1: Diversity of Living Organism

Chapter-1: The Living World

What is living? Biodiversity; Need for classification; three domains of life; taxonomy and

systematics; concept of species and taxonomical hierarchy; binomial nomenclature; tools for

study of taxonomy-museums, zoological parks, herbaria, botanical gardens.

Chapter-2: Biological Classification

Five kingdom classification; Salient features and classification of Monera, Protista and Fungi

into major groups: Lichens, Viruses and Viroids.

Chapter-3: Plant Kingdom

Salient features and classification of plants into major groups - Algae, Bryophyta, Pteridophyta,

Gymnospermae and Angiospermae (three to five salient and distinguishing features and at least

two examples of each category); Angiosperms - classification upto class, characteristic features

and examples.

Chapter-4: Animal Kingdom

Salient features and classification of animals non chordates up to phyla level and chordates up to

class level (three to five salient features and at least two examples of each category).

(No live animals or specimen should be displayed.)

Unit 2: Structural Organisation in Animals and Plants

Chapter-5: Morphology of Flowering Plants

Morphology and modifications: Tissues

Chapter-6: Anatomy of Flowering Plants

Anatomy and functions of different parts of flowering plants: root, stem, leaf, inflorescence,

flower, fruit and seed (to be dealt along with the relevant practical of the Practical Syllabus).

Chapter-7: Structural Organisation in Animals

Animal tissues: Morphology, anatomy and functions of different systems (digestive,

circulatory, respiratory, nervous and reproductive) of an insect (cockroach). (a brief account

only)

Unit 3: Cell Structure and Function

Chapter-8: Cell-The Unit of Life

Cell theory and cell as the basic unit of life: Structure of prokaryotic and eukaryotic cells;

Plant cell and animal cell; Cell envelope, cell membrane, cell wall; Cell organelles - structure

and function; endomembrane system, endoplasmic reticulum, Golgi bodies, lysosomes, vacuoles;

mitochondria, ribosomes, plastids, microbodies; cytoskeleton, cilia, flagella, centrioles

(ultrastructure and function); nucleus, nuclear membrane, chromatin, nucleolus.

Chapter-9: Biomolecules

Chemical constituents of living cells: biomolecules, structure and function of proteins,

carbodydrates, lipids, nucleic acids, enzymes, types, properties, enzyme action.

Chapter-10: Cell Cycle and Cell Division

Cell cycle, mitosis, meiosis and their significance.

Unit 4: Plant Physiology

Chapter-11: Transport in Plants

Transport in plants; Movement of water, gases and nutrients; cell to cell transport,

Diffusion, facilitated diffusion, active transport; plant-water relations, Imbibition, water

potential, osmosis, plasmolysis; long distance transport of water - Absorption, apoplast,

symplast, transpiration pull, root pressure and guttation; transpiration, opening and closing of

stomata;Uptake and translocation of mineral nutrients - Transport of food, phloem transport, massflow hypothesis; diffusion of gases.

Chapter-12: Mineral Nutrition

Essential minerals, macro- and micronutrients and their role; deficiency symptoms; mineral toxicity; elementary idea of hydroponics as a method to study mineral nutrition; nitrogen metabolism, nitrogen cycle, biological nitrogen fixation.

Chapter-13: Photosynthesis in Higher Plants

Photosynthesis as a mean of autotrophic nutrition; site of photosynthesis, pigments involved in photosynthesis (elementary idea); photochemical and biosynthetic phases of photosynthesis; cyclic and non cyclic photophosphorylation; chemiosmotic hypothesis; photorespiration; C3 and C4 pathways; factors affecting photosynthesis.

Chapter-14: Respiration in Plants

Exchange of gases; cellular respiration - glycolysis, fermentation (anaerobic), TCA cycle and electron transport system (aerobic); energy relations - number of ATP molecules generated; amphibolic pathways; respiratory quotient.

Chapter-15: Plant - Growth and Development

Seed germination; phases of plant growth and plant growth rate; conditions of growth; differentiation, dedifferentiation and redifferentiation; sequence of developmental processes in a plant cell; growth regulators - auxin, gibberellin, cytokinin, ethylene, ABA; seed dormancy; vernalisation; photoperiodism.

Unit 5: Human Physiology (A)

Chapter-16: Digestion and Absorption

Alimentary canal and digestive glands, role of digestive enzymes and gastrointestinal hormones; Peristalsis, digestion, absorption and assimilation of proteins, carbohydrates and fats; calorific values of proteins, carbohydrates and fats; egestion; nutritional and digestive disorders - PEM, indigestion, constipation, vomiting, jaundice, diarrhoea.

Chapter-17: Breating and Exchange of Gases

Respiratory organs in animals (recall only); Respiratory system in humans; mechanism of breathing and its regulation in humans - exchange of gases, transport of gases and regulation of respiration, respiratory volume; disorders related to respiration - asthma, emphysema, occupational respiratory disorders.

Chapter-18: Body Fluids and Circulation

Composition of blood, blood groups, coagulation of blood; composition of lymph and its function; human circulatory system - Structure of human heart and blood vessels; cardiac cycle, cardiac output, ECG; double circulation; regulation of cardiac activity; disorders of circulatory system - hypertension, coronary artery disease, angina pectoris, heart failure.

Human Physiology (B)

Chapter-19: Excretory Products and Their Elimination

Modes of excretion - ammonotelism, ureotelism, uricotelism; human excretory system - structure and function; urine formation, osmoregulation; regulation of kidney function - renin - angiotensin, atrial natriuretic factor, ADH and diabetes insipidus; role of other organs in excretion; disorders - uraemia, renal failure, renal calculi, nephritis; dialysis and artificial kidney.

Chapter-20: Locomotion and Movement

Types of movement - ciliary, flagellar, muscular; skeletal muscle-contractile proteins and muscle contraction; skeletal system and its functions; joints; disorders of muscular and skeletal system - myasthenia gravis, tetany, muscular dystrophy, arthritis, osteoporosis, gout.

Chapter-21: Neural Control and Coordination

Neuron and nerves; Nervous system in humans - central nervous system; peripheral nervous system and visceral nervous system; generation and conduction of nerve impulse; reflex action; sensory perception; sense organs; elementary structure and functions of eye and ear.

Chapter-22: Chemical Coordination and Integration

Endocrine glands and hormones; human endocrine system - hypothalamus, pituitary, pineal, thyroid, parathyroid, adrenal, pancreas, gonads; mechanism of hormone action (elementary Idea); role of hormones as messengers and regulators, hypo - and hyperactivity and related disorders; dwarfism, acromegaly, cretinism, goiter, exophthalmic goiter, diabetes, Addision's disease.

Unit 6. Reproduction

Chapter-1: Reproduction in Organisms

Reproduction, a characteristic feature of all organisms for continuation of species; Asexual reproduction Modes of reproduction-Asexual and sexual reproduction; Modes-Binary fission, sporulation, budding, gemmule, fragmentation; vegetative propagation in plants.

Chapter-2: Sexual Reproduction in Flowering Plants

Flower structure; Development of male and female gametophytes; Pollination-types, agencies and examples; Outbreedings devices; Pollen-Pistil interaction; Double fertilization; Post fertilization events-Development of endosperm and embryo, Development of seed and formation of fruit; Special modes-apomixis, parthenocarpy, polyembryony; Significance of seed and fruit formation.

Chapter-3: Human Reproduction

Male and female reproductive systems; Microscopic anatomy of testis and ovary; Gametogenesis-spermatogenesis & oogenesis; Menstrual cycle; Fertilisation embryo development upto blastocyst formation, implantation; Pregnancy and placenta formation (Elementary idea); Parturition (Elementary idea); Lactation (Elementary idea).

Chapter-4: Reproductive Health

Need for reproductive health and prevention of sexually transmitted diseases (STD); Birth control – Need and Methods, Contraception and Medical Termination of Pregnancy (MTP); Amniocentesis; Infertility and assisted reproductive technologies - IVF, ZIFT, GIFT (Elementary idea for general awareness).

Unit 7: Genetics and Evolution

Chapter-5: Principles of Inheritance and Variation

Mendelian Inheritance; Deviations from Mendelism-Incomplete dominance, Co-dominance, Multiple alleles and Inheritance of blood groups, Pleiotropy; Elementary idea of polygenic inheritance; Chromosome theory of inheritance; Chromosomes and genes; Sex determination - in humans, birds, honey bee; Linkage and crossing over; Sex linked inheritance - Haemophilia, Colour blindness; Mendelian disorder in humans - Thalassemia; chromosomal disorders in humans; Down's syndrome, Turner's and Klinefelter's syndromes.

Chapter-6: Molecular Basis of Inheritance

Search for genetic material and DNA as genetic material; Structure of DNA and RNA; DNA packaging; DNA replication; Central dogma; Transcription, genetic code, translation; Gene expression and regulation - Lac Operon; Genome and human ganeome project; DNA fingerprinting.

Chapter-7: Evolution

Origin of life; Biological evolution and evidences for biological evolution (Paleontological, comparative anatomy, embryology and molecular evidence); Darwin's contribution, Modern Synthetic theory of Evolution; Mechanism of evolution - Variation (Mutation and Recombination) and Natural Selection with examples, types of natural selection; Gene flow and genetic drift; Hardy - Weinberg's principle; Adaptive Radiation; Human evolution.

Unit 8: Biology and Human Welfare

Chapter-8: Human Health and Diseases

Pathogens; parasites causing human diseases (Malaria, Filariasis, Ascariasis, Typhoid, Pneumonia, common cold, amoebiasis, ring worm); Basic concepts of immunology - vaccines; Cancer, HIV and AIDs; Adolescene, drug and alcholol abuse.

Chapter-9: Strategies for Enhancement in Food Production

Improvement in food production : Plant breeding, tissue culture, single cell protein, Biofortification, Apiculature and Animal husbandry.

Chapter-10: Microbes in Human Welfare

In household food processing, industrial production, sewage treatment, energy generation and as biocontrol agents and biofertilizers. Antibiotics; production and judicious use.

Unit 9: Biotechnology and Its Applications

Chapter-11: Biotechnology - Principles and Processes

Genetic engineering (Recombinant DNA technology).

Chapter-12: Biotechnology and its Application

Application of Biotechnology in health and agriculture: Human insulin and vaccine production, gene therapy; Genetically modified organisms-Bt crops; Transgenic Animals; biosafety issues, biopiracy and patents.

Unit 10: Ecology and Environment

Chapter-13: Organisms and Populations

Organisms and environment: Habitat and niche, Population and ecological adaptations; Population interactions-mutualism, competition, predation, parasitism; Population attributesgrowth, birth rate and death rate, age distribution.

Chapter-14: Ecosystem

Patterns, components; productivity and decomposition; energy flow; pyramids of number, biomass, energy; nutrient cycles (carbon and phosphorous); ecological succession; ecological services - carbon fixation, pollination, seed dispersal, oxygen release (in brief).

Chapter-15: Biodiversity and its Conservation

Concept of biodiversity; patterns of biodiversity; importance of biodiversity; loss of biodiversity; biodiversity conservation; hotspots, endangered organisms, extinction, Red Data Book, biosphere reserves, national parks, sanctuaries and Ramsar sites.

Chapter-16: Environmental Issues

Air pollution and its control; water pollution and its control; agrochemicals and their effects;

solid waste management; radioactive waste management; greenhouse effect and climate change;

ozone layer depletion; deforestation; any one case study as success story addressing

environmental issue(s).

MATHEMATICS

Unit 1: Sets and Functions

1. Sets

Sets and their representations. Empty set. Finite and Infinite sets. Equal sets. Subsets of

a set of real numbers especially intervals (with notations). Power set. Universal set. Venn

diagrams. Union and Intersection of sets. Difference of sets. Complement of a set. Properties of

Complement Sets. Practical Problems based on sets.

2. Relations & Functions

Ordered pairs, Cartesian product of sets. Number of elements in the cartesian product of two

finite sets. Cartesian product of the sets of real (upto R x R). Definition of relation, pictorial

diagrams, domain, co-domain and range of a relation. Function as a special kind of relation from

one set to another. Pictorial representation of a function, domain, co-domain and range of a

function. Real valued functions, domain and range of these functions: constant, identity,

polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions,

with their graphs. Sum, difference, product and quotients of functions.

3. Trigonometric Functions

Positive and negative angles. Measuring angles in radians and in degrees and conversion of one

into other. Definition of trigonometric functions with the help of unit circle. Truth of the

sin²x+cos²x=1, for all x. Signs of trigonometric functions. Domain and range of trignometric

functions and their graphs. Expressing $\sin (x \pm y)$ and $\cos (x \pm y)$ in terms of $\sin x$, $\sin y$, $\cos x & \cos y$

cosy and their simple application. Deducing identities like the following:

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}, \cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$$

$$\sin x + \sin y = 2\sin \frac{x + y}{2}\cos \frac{x - y}{2}, \cos x + \cos y = 2\cos \frac{x + y}{2}\cos \frac{x - y}{2},$$

$$\sin x - \sin y = 2\cos \frac{x + y}{2}\sin \frac{x - y}{2}, \cos x - \cos y = -2\sin \frac{x + y}{2}\sin \frac{x - y}{2},$$

Identities related to $\sin 2x$, $\cos 2x$, $\tan 2x$, $\sin 3x$, $\cos 3x$ and $\tan 3x$. General solution of trigonometric equations of the type $\sin y = \sin a$, $\cos y = \cos a$ and $\tan y = \tan a$.

Unit 2: Algebra

1. Principle of Mathematical Induction

Process of the proof by induction, motivating the application of the method by looking at natural numbers as the least inductive subset of real numbers. The principle of mathematical induction and simple applications.

2. Complex Numbers and Quadratic Equations

Need for complex numbers, especially $\sqrt{1}$, to be motivated by inability to solve some of the quardratic equations. Algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system. Square root of a complex number.

3. Linear Inequalities

Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the number line. Graphical solution of linear inequalities in two variables. Graphical solution of system of linear inequalities in two variables.

4. Permutations and Combinations

Fundamental principle of counting. Factorial n. (n!)Permutations and combinations, derivation of formulae and their connections, simple applications.

5. Binomial Theorem

History, statement and proof of the binomial theorem for positive integral indices. Pascal's triangle, General and middle term in binomial expansion, simple applications.

6. Sequence and Series

Sequence and Series. Arithmetic Progression (A.P.). Arithmetic Mean (A.M.) Geometric Progression (G.P.), general term of a G.P., sum of n terms of a G.P., Arithmetic and Geometric series infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M. Formula for the following special sum:

$$\sum_{k=1}^{n} k, \sum_{k=1}^{n} k^2 \text{ and } \sum_{k=1}^{n} k^3$$

Unit 3: Coordinate Geometry

1. Straight Lines

Brief recall of two dimensional geometry from earlier classes. Shifting of origin. Slope of a line and angle between two lines. Various forms of equations of a line: parallel to axis, point-slope form, slope-intercept form, two-point form, intercept form and normal form. General equation of a line. Equation of family of lines passing through the point of intersection of two lines. Distance of a point from a line.

2. Conic Sections

Sections of a cone: circles, ellipse, parabola, hyperbola; a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard equation of a circle.

3. Introduction to Three-dimensional Geometry

Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between two points and section formula.

Unit 4: Calculus

1. Limits and Derivatives

Derivative introduced as rate of change both as that of distance function and geometrically.

Intutive idea of limit. Limits of polynomials and rational functions, trignometric, exponential and logarithmic functions. Definition of derivative, relate it to slope of tangent of a curve, derivative of sum, difference, product and quotient of functions. The derivative of polynomial and trignometric functions.

Unit 5: Mathematical Reasoning

1. Mathematical Reasoning

Mathematically acceptable statements. Connecting words/ phrases - consolidating the understanding of "if and only if (necessary and sufficient) condition", "implies", "and/or", "implied by", "and", "or", "there exists" and their use through variety of examples related to real life and Mathematics. Validating the statements involving the connecting words difference between contradiction, converse and contrapositive.

Unit 6: Statistics and Probability

1. Statistics

Measures of dispersion; Range, mean deviation, variance and standard deviation of ungrouped/grouped data. Analysis of frequency distributions with equal means but different variances.

2. Probability

Random experiments; outcomes, sample spaces (set representation). Events; occurrence of events, 'not', 'and' and 'or' events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic) probability, connections with the theories of earlier classes. Probability of an event, probability of 'not', 'and' and 'or' events.

Unit 7: Relations and Functions

1. Relations and Functions

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and

onto functions, composite functions, inverse of a function. Binary operations.

2. Inverse Trigonometric Functions

Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Elementary properties of inverse trigonometric functions.

Unit 8: Algebra

1. Matrices

Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a

matrix, symmetric and skew symmetric matrices. Operation on matrices: Addition and

multiplication and multiplication with a scalar. Simple properties of addition, multiplication and

scalar multiplication. Noncommutativity of multiplication of matrices and existence of non-zero

matrices whose product is the zero matrix (restrict to square matrices of order 2). Concept of

elementary row and column operations. Invertible matrices and proof of the uniqueness of

inverse, if it exists; (Here all matrices will have real entries).

2. Determinants

Determinant of a square matrix (up to 3 x 3 matrices), properties of determinants, minors, co-

factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a

square matrix. Consistency, inconsistency and number of solutions of system of linear equations

by examples, solving system of linear equations in two or three variables (having unique

solution) using inverse of a matrix.

Unit 9: Calculus

1. Continuity and Differentiability

Continuity and differentiability, derivative of composite functions, chain rule, derivatives of

inverse trigonometric functions, derivative of implicit functions. Concept of exponential and

logarithmic functions.

Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives. Rolle's and Lagrange's Mean Value Theorems (without proof) and their geometric interpretation.

2. Applications of Derivatives

Applications of derivatives: rate of change of bodies, increasing/decreasing functions, tangents and normals, use of derivatives in approximation, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations).

3. Integrals

Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

$$\int \frac{dx}{x^{2} \pm a^{2}}, \int \frac{dx}{\sqrt{x^{2} \pm a^{2}}}, \int \frac{dx}{\sqrt{a^{2} - x^{2}}}, \int \frac{dx}{ax^{2} + bx + c}, \int \frac{dx}{\sqrt{ax^{2} + bx + c}}$$

$$\int \frac{px + q}{ax^{2} + bx + c} dx, \int \frac{px + q}{\sqrt{ax^{2} + bx + c}} dx, \int \sqrt{a^{2} \pm x^{2}} dx, \int \sqrt{x^{2} - a^{2}} dx$$

$$\int \sqrt{ax^{2} + bx + c} dx, \int (px + q) \sqrt{ax^{2} + bx + c} dx$$

Definite integrals as a limit of a sum, Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

4. Applications of the Integrals

Applications in finding the area under simple curves, especially lines, circles/parabolas/ellipses (in standard form only), Area between any of the two above said curves (the region should be clearly identifiable).

5. Differential Equations

Definition, order and degree, general and particular solutions of a differential equation. Formation of differential equation whose general solution is given. Solution of differential equations by method of separation of variables solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:

dy/dx + py = q, where p and q are functions of x or constants.

dx/dy + px = q, where p and q are functions of y or constants.

Unit 10: Vectors and Three-Dimensional Geometry

1. Vectors

Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors, scalar triple product of vectors.

2. Three - dimensional Geometry

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, coplanar and skew lines, shortest distance between two lines. Cartesian and vector equation of a plane. Angle between (i) two lines, (ii) two planes, (iii) a line and a plane. Distance of a point from a plane.

Unit 11: Linear Programming

1. Linear Programming

Introduction, related terminology such as constraints, objective function, optimization, different types of linear programming (L.P.) problems, mathematical formulation of L.P. problems, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded and unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit 12: Probability

1. Probability

Conditional probability, multiplication theorem on probability, independent events, total probability, Baye's theorem, Random variable and its probability distribution, mean

and variance of random variable. Repeated independent (Bernoulli) trials and Binomial distribution.

For Further Details, Notice or Update please visit www.aiysee.com regularly.